Difference between revisions of "Mathematical Functions in Python"

From Sustainability Methods
m (This article provides an overview over mathematical functions in Pyhton with examples.)
 
(2 intermediate revisions by one other user not shown)
Line 1: Line 1:
 
THIS ARTICLE IS STILL IN EDITING MODE
 
THIS ARTICLE IS STILL IN EDITING MODE
 
== Introduction ==
 
== Introduction ==
Python has a built-in module math which defines various mathematical functions. In addition to math module, there is a fundamental package for scientific computing in Python named NumPy (Numerical Python). It is an open source Python library and contains multidimensional array and matrix data structures. In this section, examples of both methods will be presented.
+
Python has a built-in module math which defines various mathematical functions. In addition to the math module, there is a fundamental package for scientific computing in Python named NumPy (Numerical Python). It is an open-source Python library and contains multidimensional array and matrix data structures. In this section, examples of both methods will be presented.
  
 
For using math, we must first import this module:
 
For using math, we must first import this module:
Line 101: Line 101:
  
 
<syntaxhighlight lang="Python" line>
 
<syntaxhighlight lang="Python" line>
##The exponents of two 1-Darray
+
##The exponents of two 1-D arrays
  
 
ar1 = [3, 5, 7, 2, 4]
 
ar1 = [3, 5, 7, 2, 4]
Line 114: Line 114:
  
 
<syntaxhighlight lang="Python" line>
 
<syntaxhighlight lang="Python" line>
##The power vales of 2-D array
+
##The power values of a 2-D array
  
 
ar1 = np.array([[3,4,3],[6,7,5]])
 
ar1 = np.array([[3,4,3],[6,7,5]])
Line 129: Line 129:
 
=== Root Functions ===
 
=== Root Functions ===
  
To implement root funtions in python we can use the built-in power function. Alternatively we can use 'math' or 'numpy'.
+
To implement root functions in python we can use the built-in power function. Alternatively, we can use 'math' or 'numpy'.
  
 
{| class="wikitable"
 
{| class="wikitable"
Line 231: Line 231:
 
! math !! numpy !! Description
 
! math !! numpy !! Description
 
|-
 
|-
| math.log(x, base) || np.log(x) || The natural logarithm log is the inverse of the exponential function, The math.log() method returns the natural logarithm of a number, or the logarithm of number to base.base value is optional and the default is e.
+
| math.log(x, base) || np.log(x) || The natural logarithm log is the inverse of the exponential function. The math.log() method returns the natural logarithm of a number, or the logarithm of number to base. Base value is optional and the default is e.
 
|}
 
|}
  
Line 316: Line 316:
 
2.https://numpy.org/doc/stable/reference/routines.math.html#extrema-finding
 
2.https://numpy.org/doc/stable/reference/routines.math.html#extrema-finding
  
[[Category:Statistics]]
 
[[Category:Python basics]]
 
  
 
The [[Table of Contributors|author]] of this entry is XX. Edited by Milan Maushart
 
The [[Table of Contributors|author]] of this entry is XX. Edited by Milan Maushart

Latest revision as of 12:30, 3 September 2024

THIS ARTICLE IS STILL IN EDITING MODE

Introduction

Python has a built-in module math which defines various mathematical functions. In addition to the math module, there is a fundamental package for scientific computing in Python named NumPy (Numerical Python). It is an open-source Python library and contains multidimensional array and matrix data structures. In this section, examples of both methods will be presented.

For using math, we must first import this module:

import math

For using `NumPy`, we must first install it. There is no prerequisite for installing NumPy except Python itself. We can use `pip` or `conda` for this purpose:

'pip'

pip install numpy

'conda'

conda install numpy

We must import `numpy` to access it and its functions. We also shorten the imported name to `np` for better readability of code using NumPy:

import numpy as np

Mathematical Functions

Basic Functions

Some basic functions for my fellow students. Some functions need the module `math`. Please check out the introduction at the top. :)

math Description
math.ceil(x) Rounds the number x up to the next integer
math.floor(x) Rounds the number x down to the next integer
math.com (n,k) Binomial Coefficient: number of possible k choose n without order
math,factorial(n) Returns n factorial if n >= 0
abs(x) Returns the absolute value of x
math.ceil(5.3)

6
math.floor(173.123)

173
math.factorial(4)

24
abs(-17.2)

17.2

Power Functions

built-in function math numpy Description
pow(x, y, mod) math.pow(x, y, mod) np.power(x1, x2,...) x to the power of y. x1, x2 array_like

Examples

pow (2,2)=4
##Square
pow (2,3)=8

##=Cube
pow (3,4, mode: 10)

The value of (3**4) % 10 is = 1
##The exponents of two 1-D arrays

ar1 = [3, 5, 7, 2, 4]

ar2 = [6, 2, 5, 3, 5]

arr = np.power(ar1,ar2)

arr: array([  729,    25, 16807,     8,  1024], dtype=int32)
##The power values of a 2-D array

ar1 = np.array([[3,4,3],[6,7,5]])

ar2 =np.array([[4,2,7],[4,2,1]])

arr = np.power(ar1,ar2)

arr: array([[  81,   16, 2187],

       [1296,   49,    5]], dtype=int32)

Root Functions

To implement root functions in python we can use the built-in power function. Alternatively, we can use 'math' or 'numpy'.

built-in power function math numpy Description
x**(1/2) math.sqrt(x) np.sqrt(x) Returns the square root of x
x**(1/3) math.powe(x, 1/3) np.cbrt(x) Returns the cube root of x
x**(1/n) math.pow(x, 1/n) np.power(x, 1/n) Returns the nth root of x

Examples

  • 'built-in function'
0** (1/2)

0.0
9** (1/3)

2.0
120** (1/10)

1.6140542384620635
  • 'math'
math.sqrt(0)

0.0
math.pow(9, 1/3)

2.0
math.pow(120, 1/10)

1.6140542384620635
  • 'numpy'
np.sqrt(0)

0.0
np.cbrt(9)

2.0
np.power(120, 1/10)

1.6140542384620635

Exponential Functions

math numpy Description
math.exp(x) np.exp() The math.exp() method returns E raised to the power of x (Ex).‘E’ is the base of the natural system of logarithms and x is the number passed to it, return value: Float

Examples

math.exp(66) or np.exp(66)

4.607186634331292e+28

DELETE?

math.exp(66) or np.exp(66)

214643579785916.06

Log Functions

math numpy Description
math.log(x, base) np.log(x) The natural logarithm log is the inverse of the exponential function. The math.log() method returns the natural logarithm of a number, or the logarithm of number to base. Base value is optional and the default is e.

Examples

# get the log value of an array with base 2

arr = np.array([1, 4, 6])

arr1 = np.log2(arr)

print(arr1)

​

# Output :

# [0.        2.        2.5849625]
# get the log value of an array with base 10

arr = np.array([1, 4, 6])

arr1 = np.log10(arr)

print(arr1)

​

# Output :

# [0.         0.60205999 0.77815125]

Trigonometric Functions

math numpy Description
math.cos(x) np.cos(x) Return the cosine of x radians.
math.sin(x) np.sin(x) Return the sine of x radians.
math.tan(x) np.tan(x) Return the tangent of x radians.

Examples

We use math.pi or np.pi methods for defining pi(π) in Python.

  • math
math.cos(math.pi)

-1.0
math.sin(math.pi/2)

1.0
  • numpy
np.cos(math.pi)

-1.0
np.sin(math.pi/2)

1.0

References

1.https://docs.python.org/3/library/math.html

2.https://numpy.org/doc/stable/reference/routines.math.html#extrema-finding


The author of this entry is XX. Edited by Milan Maushart