Difference between revisions of "Mathematical Functions in Python"
(This article provides an overview over mathematical functions in Pyhton withe examples.) |
|||
(5 intermediate revisions by one other user not shown) | |||
Line 1: | Line 1: | ||
THIS ARTICLE IS STILL IN EDITING MODE | THIS ARTICLE IS STILL IN EDITING MODE | ||
− | == | + | == Introduction == |
− | Python has a built-in module math which defines various mathematical functions. In addition to math module, there is a fundamental package for scientific computing in Python named NumPy (Numerical Python). It is an open source Python library and contains multidimensional array and matrix data structures. In this section, examples of both methods will be presented. | + | Python has a built-in module math which defines various mathematical functions. In addition to the math module, there is a fundamental package for scientific computing in Python named NumPy (Numerical Python). It is an open-source Python library and contains multidimensional array and matrix data structures. In this section, examples of both methods will be presented. |
For using math, we must first import this module: | For using math, we must first import this module: | ||
Line 29: | Line 29: | ||
</syntaxhighlight> | </syntaxhighlight> | ||
− | == | + | == Mathematical Functions == |
=== Basic Functions === | === Basic Functions === | ||
Some basic functions for my fellow students. Some functions need the module `math`. Please check out the introduction at the top. :) | Some basic functions for my fellow students. Some functions need the module `math`. Please check out the introduction at the top. :) | ||
Line 101: | Line 101: | ||
<syntaxhighlight lang="Python" line> | <syntaxhighlight lang="Python" line> | ||
− | ##The exponents of two 1- | + | ##The exponents of two 1-D arrays |
ar1 = [3, 5, 7, 2, 4] | ar1 = [3, 5, 7, 2, 4] | ||
Line 114: | Line 114: | ||
<syntaxhighlight lang="Python" line> | <syntaxhighlight lang="Python" line> | ||
− | ##The power | + | ##The power values of a 2-D array |
ar1 = np.array([[3,4,3],[6,7,5]]) | ar1 = np.array([[3,4,3],[6,7,5]]) | ||
Line 129: | Line 129: | ||
=== Root Functions === | === Root Functions === | ||
− | To implement root | + | To implement root functions in python we can use the built-in power function. Alternatively, we can use 'math' or 'numpy'. |
{| class="wikitable" | {| class="wikitable" | ||
Line 219: | Line 219: | ||
</syntaxhighlight> | </syntaxhighlight> | ||
+ | DELETE? | ||
<syntaxhighlight lang="Python" line> | <syntaxhighlight lang="Python" line> | ||
math.exp(66) or np.exp(66) | math.exp(66) or np.exp(66) | ||
Line 230: | Line 231: | ||
! math !! numpy !! Description | ! math !! numpy !! Description | ||
|- | |- | ||
− | | math.log(x, base) || np.log(x) || The natural logarithm log is the inverse of the exponential function | + | | math.log(x, base) || np.log(x) || The natural logarithm log is the inverse of the exponential function. The math.log() method returns the natural logarithm of a number, or the logarithm of number to base. Base value is optional and the default is e. |
|} | |} | ||
Line 314: | Line 315: | ||
2.https://numpy.org/doc/stable/reference/routines.math.html#extrema-finding | 2.https://numpy.org/doc/stable/reference/routines.math.html#extrema-finding | ||
+ | |||
+ | |||
+ | The [[Table of Contributors|author]] of this entry is XX. Edited by Milan Maushart |
Latest revision as of 12:30, 3 September 2024
THIS ARTICLE IS STILL IN EDITING MODE
Contents
Introduction
Python has a built-in module math which defines various mathematical functions. In addition to the math module, there is a fundamental package for scientific computing in Python named NumPy (Numerical Python). It is an open-source Python library and contains multidimensional array and matrix data structures. In this section, examples of both methods will be presented.
For using math, we must first import this module:
import math
For using `NumPy`, we must first install it. There is no prerequisite for installing NumPy except Python itself. We can use `pip` or `conda` for this purpose:
'pip'
pip install numpy
'conda'
conda install numpy
We must import `numpy` to access it and its functions. We also shorten the imported name to `np` for better readability of code using NumPy:
import numpy as np
Mathematical Functions
Basic Functions
Some basic functions for my fellow students. Some functions need the module `math`. Please check out the introduction at the top. :)
math | Description |
---|---|
math.ceil(x) | Rounds the number x up to the next integer |
math.floor(x) | Rounds the number x down to the next integer |
math.com (n,k) | Binomial Coefficient: number of possible k choose n without order |
math,factorial(n) | Returns n factorial if n >= 0 |
abs(x) | Returns the absolute value of x |
math.ceil(5.3) 6
math.floor(173.123) 173
math.factorial(4) 24
abs(-17.2) 17.2
Power Functions
built-in function | math | numpy | Description |
---|---|---|---|
pow(x, y, mod) | math.pow(x, y, mod) | np.power(x1, x2,...) | x to the power of y. x1, x2 array_like |
Examples
pow (2,2)=4 ##Square
pow (2,3)=8 ##=Cube
pow (3,4, mode: 10) The value of (3**4) % 10 is = 1
##The exponents of two 1-D arrays ar1 = [3, 5, 7, 2, 4] ar2 = [6, 2, 5, 3, 5] arr = np.power(ar1,ar2) arr: array([ 729, 25, 16807, 8, 1024], dtype=int32)
##The power values of a 2-D array ar1 = np.array([[3,4,3],[6,7,5]]) ar2 =np.array([[4,2,7],[4,2,1]]) arr = np.power(ar1,ar2) arr: array([[ 81, 16, 2187], [1296, 49, 5]], dtype=int32)
Root Functions
To implement root functions in python we can use the built-in power function. Alternatively, we can use 'math' or 'numpy'.
built-in power function | math | numpy | Description |
---|---|---|---|
x**(1/2) | math.sqrt(x) | np.sqrt(x) | Returns the square root of x |
x**(1/3) | math.powe(x, 1/3) | np.cbrt(x) | Returns the cube root of x |
x**(1/n) | math.pow(x, 1/n) | np.power(x, 1/n) | Returns the nth root of x |
Examples
- 'built-in function'
0** (1/2) 0.0
9** (1/3) 2.0
120** (1/10) 1.6140542384620635
- 'math'
math.sqrt(0) 0.0
math.pow(9, 1/3) 2.0
math.pow(120, 1/10) 1.6140542384620635
- 'numpy'
np.sqrt(0) 0.0
np.cbrt(9) 2.0
np.power(120, 1/10) 1.6140542384620635
Exponential Functions
math | numpy | Description |
---|---|---|
math.exp(x) | np.exp() | The math.exp() method returns E raised to the power of x (Ex).‘E’ is the base of the natural system of logarithms and x is the number passed to it, return value: Float |
Examples
math.exp(66) or np.exp(66) 4.607186634331292e+28
DELETE?
math.exp(66) or np.exp(66) 214643579785916.06
Log Functions
math | numpy | Description |
---|---|---|
math.log(x, base) | np.log(x) | The natural logarithm log is the inverse of the exponential function. The math.log() method returns the natural logarithm of a number, or the logarithm of number to base. Base value is optional and the default is e. |
Examples
# get the log value of an array with base 2 arr = np.array([1, 4, 6]) arr1 = np.log2(arr) print(arr1) # Output : # [0. 2. 2.5849625]
# get the log value of an array with base 10 arr = np.array([1, 4, 6]) arr1 = np.log10(arr) print(arr1) # Output : # [0. 0.60205999 0.77815125]
Trigonometric Functions
math | numpy | Description |
---|---|---|
math.cos(x) | np.cos(x) | Return the cosine of x radians. |
math.sin(x) | np.sin(x) | Return the sine of x radians. |
math.tan(x) | np.tan(x) | Return the tangent of x radians. |
Examples
We use math.pi or np.pi methods for defining pi(π) in Python.
- math
math.cos(math.pi) -1.0
math.sin(math.pi/2) 1.0
- numpy
np.cos(math.pi) -1.0
np.sin(math.pi/2) 1.0
References
1.https://docs.python.org/3/library/math.html
2.https://numpy.org/doc/stable/reference/routines.math.html#extrema-finding
The author of this entry is XX. Edited by Milan Maushart